Facebook Twitter Instagram
    Catalina Fashion
    Facebook Twitter Instagram
    Catalina Fashion
    Home»Health care»Dorsal Cochlear Nucleus Tinnitus Head Injury
    Health care

    Dorsal Cochlear Nucleus Tinnitus Head Injury

    Bella RichBy Bella RichJuly 7, 2022Updated:October 12, 2022No Comments4 Mins Read
    Facebook Twitter Pinterest LinkedIn Tumblr Email
    Dorsal Cochlear Nucleus Tinnitus Head Injury
    Dorsal Cochlear Nucleus Tinnitus Head Injury
    Share
    Facebook Twitter LinkedIn Pinterest Email

    The dorsal cochlear nuleus (DCN) is a brainstem nucleus that receives direct input from the auditory nerve. During noise exposure, spontaneous firing rates in Fusiform cells, the principal output neurons of the DCN, increased. Increased activity is correlated with tinnitus generation. Noise exposure also triggers plastic readjustments in the DCN, which is linked to tinnitus generation.

    Table of Contents

    • axonal sprouting
    • evoked FA responses
    • ablations of the dorsal cochlear nucleus
    • Effect of blast exposure on spontaneous firing rates in the dorsal cochlear nucleus
    • Correlation between synaptophysin and PSD95

    axonal sprouting

    Scientists are beginning to understand how the brain responds to a variety of sounds. Acoustic trauma disrupts the cochlear nucleus’ lateral inhibitory network, which extends across a wide range of frequencies. The increased excitability that results from the damage may result in alterations in transduction and neurotransmitter release. Furthermore, the changes in the brain may also alter the spontaneous activity of auditory nerve cells.

    In animal models, the loss of surround inhibition after hearing damage could lead to gain enhancement at frequencies below the region where the cochlear damage occurred. These findings could lead to new ways to treat tinnitus, allowing the researchers to determine which brain pathways may be affected. However, further research is needed to identify which types of brain damage are most common.

    evoked FA responses

    We analyzed evoked FA responses in patients with tinnitus by comparing bushy cells and fusiform cells. In particular, we found that bushy cells show a higher firing rate and greater increases in RIF slope and peak. Furthermore, we found enhanced correlations between synchronous and spontaneous FA responses. This result confirms previous findings that bushy cells have a greater capacity for perceptual binding.

    To further clarify the relation between bushy cell sound-evoked activity and tinnitus, we compared HI with TI. HI, bounded by the geometric BF of unit-pair relative to the TI carriers, did not show any correlation with the corresponding TI. However, HI and evoked synchrony were related to the percent change in non-prepulse startle amplitudes.

    ablations of the dorsal cochlear nucleus

    Ablations of the dorsal cochlea nucleus for tinnituses target the dorsal part of the DCN. These procedures disrupt major rostral outputs. They have been successfully used in animal models of tinnitus. MRI imaging studies have revealed abnormally elevated spontaneous neural activity in the DCN of animals with tinnitus.

    An electrophysiological study showed that the DCN is regulated by activity in ipsilateral cranial nerves. This explains how tinnitus can be modulated by manipulations of the head or neck, and rarely affected by the contralateral side. Several types of neuronal plasticity have been found in the DCN, including increased bursting activity in the primary auditory cortex and the medial geniculate body.

    Effect of blast exposure on spontaneous firing rates in the dorsal cochlear nucleus

    An increasing body of evidence suggests that blast-induced tinnitus is related to an increase in auditory neural activity. However, the mechanism for the increased activity may not yet be fully understood. The brain regions that are most affected by blast exposure include the cochlea, primary auditory cortex, medial geniculate body, and cochlea.

    High-pressure blast shock waves are known to cause tinnitus. The underlying mechanism of tinnitus may be related to damage to the structures of the ear or to direct brain impact. In addition, blast exposure may cause a cascade of neuroplastic changes in the auditory and nonauditory brain regions, and affect spontaneous firing rates in the dorsal cochlear nucleus (DCN). In the present study, we investigated the effect of a single blast on the SFR in rats with tinnitus. We assessed the rats’ behavioral evidence of tinnitus using a gap-detection startle-reflex paradigm. We also measured the SFRs of the rats’ ears three months after blast exposure.

    Correlation between synaptophysin and PSD95

    The expression of synaptophysin and PSD95 is correlated with the presence of damaged auditory pathways. Synaptophysin and PSD95 are pre and postsynaptic markers. After head injury, both proteins are up-regulated in the auditory cortex, a site of synaptogenesis. The present study also found that PSD95 and synaptophysin expression were elevated in the tinnitus group and decreased in the non-tinnitus group. However, the results were not statistically significant.

    The early emergence of tinnitus may be due to a degeneration of cochlear fibers, which altered the structure of the central auditory system. Although the onset of tinnitus was not apparent in all rats at week one, the GPIAS recordings showed that the condition persisted for at least three weeks.

    health info injury news update
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
    Bella Rich

    Related Posts

    Top Fashion Brands Ranking Index

    October 5, 2022

    Nail Design Ideas For Fun and Playful Nails

    September 29, 2022

    Americas Next Top Model

    September 21, 2022

    Leave A Reply Cancel Reply

    You must be logged in to post a comment.

    Facebook Twitter Instagram Pinterest
    © 2023 ThemeSphere. Designed by ThemeSphere.

    Type above and press Enter to search. Press Esc to cancel.

    We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept All”, you consent to the use of ALL the cookies. However, you may visit "Cookie Settings" to provide a controlled consent.
    Cookie SettingsAccept All
    Manage consent

    Privacy Overview

    This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
    Necessary
    Always Enabled
    Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
    CookieDurationDescription
    cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
    cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
    cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
    cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
    cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
    viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
    Functional
    Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
    Performance
    Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
    Analytics
    Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
    Advertisement
    Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
    Others
    Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
    SAVE & ACCEPT